How to cite item

Glycogen Synthase Kinase 3β Inhibitor (2'Z,3'E)-6-Bromo-indirubin-3'-Oxime Enhances Drug Resistance to 5-Fluorouracil Chemotherapy in Colon Cancer Cells

  
@article{CJCR841,
	author = {Kun-ping Liu and Feng Luo and Si-ming Xie and Li-juan Tang and Mei-xiang Chen and Xue-fang Wu and Xue-yun Zhong and Tong Zhao},
	title = {Glycogen Synthase Kinase 3β Inhibitor (2'Z,3'E)-6-Bromo-indirubin-3'-Oxime Enhances Drug Resistance to 5-Fluorouracil Chemotherapy in Colon Cancer Cells},
	journal = {Chinese Journal of Cancer Research},
	volume = {24},
	number = {2},
	year = {2012},
	keywords = {},
	abstract = {Objective: To explore the effects and mechanism of glycogen synthase kinase 3β (GSK-3β) inhibitor (2'Z,3'E)-6-bromo-indirubin-3'-oxime (BIO) on drug resistance in colon cancer cells. Methods: The colon cancer SW480 and SW620 cells were treated with BIO, 5-fluorouracil (5-FU) and BIO/5-FU, separately. Cell cycle distribution, apoptosis level and efflux ability of rhodamine 123 (Rh123) were detected by flow cytometry. The protein expressions of P-glycoprotein (P-gp), multidrug resistance protein 2 (MRP2), thymidylate synthase (TS), β-catenin, E2F-1 and Bcl-2 were detected by Western blot. β-catenin and P-gp were stained with double immunofluorescence and observed under a confocal microscope. Results: BIO up-regulated β-catenin, P-gp, MRP2 and TS, enhanced the efflux ability of Rh123, decreased Bcl-2 protein and gave the opposite effect to E2F-1 protein in SW480 and SW620 cells. Furthermore, BIO significantly inhibited cell apoptosis, increased S and G2/M phase cells, and reduced the cell apoptosis induced by 5-FU in SW480 cells, whereas the effects were slight or not obvious in SW620 cells. Conclusion: GSK-3β was involved in drug resistance regulation, and activation of β-catenin and inhibition of E2F-1 may be the most responsible for the enhancement of 5-FU chemotherapy resistance induced by GSK-3β inhibitor BIO in colon cancer.},
	issn = {1993-0631},	url = {https://cjcr.amegroups.org/article/view/841}
}